UNUSUAL CONFORMATIONS OF ISOELECTRONIC (SiO)₄, (SiOSiN)₂ AND (SiN)₄ RINGS

ERNST EGERT, MARTIN HAASE, UWE KLINGEBIEL, CORNELIA LENSCH, DIETER SCHMIDT and GEORGE M. SHELDRICK

Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen (Federal Republic of Germany)

(Received October 10th, 1985)

Summary

The crystal structures of three compounds containing eight-membered Si₄(N,O)₄ rings have been determined: [t-Bu₂SiOSiMe₂O]₂ (I), [t-Bu₂SiOSiMe₂NH]₂ (II) and [i-Pr₂SiNH]₄ (III). I forms monoclinic crystals, space group C2/c, with a 14.124(4), b 13.191(4), c 16.156(6) Å, β 108.09(2)°, Z = 4. II also crystallizes in C2/c, with a 14.234(5), b 13.372(6), c 16.142(8) Å, β 108.87(3)°, Z = 4. The structure determinations show that I and II are essentially isostructural, with effectively planar eight-membered rings lying on crystallographic inversion centres. However the Si-O-Si angle in II is almost linear (178.0(1)°) and the Si-N-Si angle is 145.2(2)°, whereas intermediate values are observed for the Si-O-Si angles in I (156.0(1), 164.2(1)°). III is tetragonal, space group I $\overline{4}$, with a, b 13.722(1), c 8.911(2) Å, Z = 2. The ring adopts a tub conformation with Si-N-Si 139.1(2)°, and the molecule possesses crystallographic S₄($\overline{4}$) symmetry. The structures were refined to R = 0.039, 0.053, and 0.040 for 2285, 2081, and 696 unique observed reflections, respectively.

Introduction

Silanols are direct precursors of cyclosiloxanes [1]. Starting from an aminosilanol we were able to isolate the eight-membered ring II, which is isoelectronic with the cyclotetrasiloxane I [2]. Elimination of LiF from lithiated fluorodiisopropylsilyl-amine gave the eight-membered cyclotetrasilazane III [3]. In order to compare the geometries of these isoelectronic ring systems, we have determined the crystal structures of I–III.

Experimental

Crystal data

I: $C_{20}H_{48}O_4Si_4$, M = 464.9, monoclinic, space group C2/c, a 14.124(4), b 13.191(4), c 16.156(6) Å, β 108.09(2)°, U 2861.2 Å³, Z = 4, D_c 1.079 g cm⁻³,

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

F(000) = 1024, $\lambda(\text{Mo-}K_{\alpha}) 0.71069$ Å, $\mu 2.21 \text{ cm}^{-1}$, crystal size $0.4 \times 0.4 \times 0.5 \text{ mm}^3$, sealed in capillary; Stoe-Siemens AED diffractometer, unit cell parameters from 2θ values of 40 reflections centred at $\pm \omega$ ($20 < 2\theta < 25^\circ$), 3714 reflections with $2\theta < 50^\circ$ measured by profile analysis [4], 2285 unique data with $F > 3\sigma(F)$ used for structure determination; no absorption corrections.

II: $C_{20}H_{50}N_2O_2Si_4$, M = 463.0, monoclinic, space group C2/c, a 14.234(5), b 13.372(6), c 16.142(8) Å, β 108.87(3)°, U 2907.3 Å³, Z = 4, D_c 1.058 g cm⁻³, F(000) = 1024, μ 2.15 cm⁻¹, crystal size $0.7 \times 0.7 \times 0.8$ mm³, 4402 reflections with $2\theta < 50^\circ$, 2081 unique data with $F > 3\sigma(F)$, other details as I.

III: $C_{24}H_{60}N_4Si_4$, M = 517.1, tetragonal, space group $I\overline{4}$, a, b 13.722(1), c 8.911(2) Å, U = 1677.9 Å³, Z = 2, D_c 1.023 g cm⁻³, F(000) = 576, μ 1.89 cm⁻¹, crystal size $0.3 \times 0.3 \times 0.6$ mm³, 1655 reflections with $2\theta < 50^{\circ}$, 696 unique data with $F > 4\sigma(F)$, other details as I.

Structure determination

The structures were determined by multisolution direct methods and refined with anisotropic non-H atoms to a minimum of $\sum w\Delta^2$ ($\Delta = |F_o| - |F_c|$; $w^{-1} = \sigma^2(F) + gF^2$ with g = 0.0003, 0.0004 and 0.0001, respectively). A riding model was employed for the hydrogens with C-H 0.96 Å and $U(H) = 1.2 U_{eq}$, where U_{eq} is the equivalent isotropic thermal displacement parameter for the C or N atom to which the H was attached. Complex scattering factors were employed [5]. For the non-centrosymmetric structure III, the absolute assignment of the axes was confirmed by a Rogers η refinement [6], though the result was not significant (η refined from -1 to 0.8(8)).

TABLE 1

ATOMIC COORDINATES (×10⁴) AND EQUIVALENT ISOTROPIC THERMAL PARAMETERS ($Å^2 \times 10^3$) FOR I (Equivalent isotropic U defined as one third of the trace of the orthogonalised U_{ij} tensor)

	x	у	Z	U _{eq}
Si(1)	3193(1)	951(1)	5385(1)	38(1)
Si(2)	3160(1)	2582(1)	3906(1)	37(1)
On	3267(1)	1661(1)	4594(1)	48(1)
0(2)	2516(1)	1513(1)	5893(1)	48(1)
C(11)	2613(2)	-267(2)	4934(2)	63(1)
C(12)	4452(2)	735(2)	6148(1)	64(1)
C(2)	2469(2)	2059(2)	2796(1)	52(1)
C(21)	1443(2)	1699(2)	2818(2)	76(1)
C(22)	2304(2)	2864(2)	2081(1)	98(1)
C(23)	3010(2)	1148(2)	2564(2)	93(1)
C(3)	4446(1)	3117(1)	4096(1)	48(1)
C(31)	4823(2)	3478(2)	5051(1)	69(1)
C(32)	4440(2)	4039(2)	3520(2)	84(1)
C(33)	5173(2)	2325(2)	3967(2)	94(1)

TABLE 2

ATOMIC COORDINATES ($\times 10^4$) AND EQUIVALENT ISOTROPIC THERMAL PARAMETERS (${\rm \AA}^2 \times 10^3$) FOR II

	x	у	Z	Ueq	
Si(1)	1778(1)	4034(1)	4618(1)	45(1)	
Si(2)	3139(1)	2608(1)	3891(1)	44(1)	
ทั่	2431(2)	3568(2)	4014(2)	72(1)	
0	3186(1)	1776(1)	4624(1)	64(1)	
C(11)	480(2)	4254(3)	3916(2)	85(2)	
C(12)	2298(3)	5235(2)	5126(3)	86(2)	
C(21)	2498(2)	2031(3)	2778(2)	64(1)	
C(22)	2364(3)	2774(3)	2029(2)	112(2)	
C(23)	3047(3)	1111(3)	2616(3)	110(2)	
C(24)	1455(2)	1697(3)	2756(3)	100(2)	
C(25)	4445(2)	3097(2)	4105(2)	58(1)	
C(26)	5126(2)	2291(3)	4012(3)	110(2)	
C(27)	4816(3)	3478(3)	5051(2)	92(2)	
C(28)	4475(3)	3979(3)	3511(3)	98(2)	

TABLE 3

ATOMIC COORDINATES ($\times 10^4$) AND EQUIVALENT ISOTROPIC THERMAL PARAMETERS (Å $^2 \times 10^3$) FOR III

	x	y	z	U _{eq}
Si	1522(1)	383(1)	5574(1)	54(1)
N	796(2)	1124(2)	4491(4)	60(1)
C(1)	1480(4)	763(3)	7593(5)	80(2)
C(11)	1784(6)	- 9(4)	8727(6)	136(3)
C(12)	2052(4)	1715(4)	7859(7)	115(3)
C(2)	2805(3)	522(3)	4801(6)	80(2)
C(21)	2885(4)	464(4)	3120(6)	112(3)
C(22)	3508(3)	- 206(5)	5522(10)	141(3)

TABLE 4					
BOND LENGTHS (Å) AND ANGLES (°) FOR I					
Si(1)-O(1)	1.614(2)	Si(1)-O(2)			
Si(1) - C(11)	1.848(3)	Si(1) - C(12)			

Si(1)-O(1)	1.614(2)	Si(1)-O(2)	1.620(2)
Si(1)-C(11)	1.848(3)	Si(1)-C(12)	1.845(3)
Si(2)-O(1)	1.621(2)	Si(2)-C(2)	1.886(3)
Si(2)-C(3)	1.883(3)	Si(2)-O(2')	1.623(2)
C(2)-C(22)	1.533(4)	C(2)-C(21)	1.536(4)
C(3)-C(31)	1.542(3)	C(2)-C(23)	1.531(4)
C(3)-C(33)	1.525(4)	C(3)-C(32)	1.530(4)
O(1)-Si(1)-O(2)	109.3(1)	O(1) - Si(1) - C(11)	108.8(1)
O(2)-Si(1)-C(11)	109.8(1)	O(1)-Si(1)-C(12)	109.5(1)
O(2)-Si(1)-C(12)	109.3(1)	O(1)-Si(2)-C(2)	106.7(1)
O(1)-Si(2)-C(3)	106.8(1)	C(2)-Si(2)-C(3)	118.7(1)
O(1)-Si(2)-O(2')	110.5(1)	C(2)-Si(2)-O(2')	107.3(1)
C(3)-Si(2)-O(2')	106.8(1)	Si(1) - O(1) - Si(2)	164.2(1)
Si(1) - O(2) - Si(2')	156.0(1)	Si(2)-C(2)-C(21)	107.7(2)
Si(2)-C(2)-C(22)	112.1(2)	Si(2)-C(2)-C(23)	111.7(2)
Si(2)-C(3)-C(31)	107.2(2)	Si(2)-C(3)-C(32)	112.1(2)
Si(2)-C(3)-C(33)	112.2(2)	C(31)-C(3)-C(32)	107.4(2)
C(21)-C(2)-C(22)	107.9(2)	C(31)-C(3)-C(33)	108.1(2)
C(21)-C(2)-C(23)	108.0(2)	C(32)-C(3)-C(33)	109.7(2)
C(22)-C(2)-C(23)	109.3(2)	C(11)-Si(1)-C(12)	110.2(1)

Final difference syntheses showed no significant features. I: 151 parameters, R = 0.039, $R_w (= (\sum w \Delta^2 / \sum w F_0^2)^{1/2}) = 0.050$; II: 127 parameters, R = 0.053, $R_w = 0.057$; III: 85 parameters, R = 0.040, $R_w = 0.039$. The slope of the normal probability plot [7] was 1.56, 1.34 and 1.54, respectively.

TABLE 5

BOND LENGTHS (Å) AND ANGLES (°) FOR II

Si(1)~N	1.670(3)	Si(1)-C(11)	1.852(3)
Si(1) - C(12)	1.846(3)	Si(1)-O'	1.622(2)
Si(2)-N	1.682(3)	Si(2)-O	1.609(2)
Si(2)-C(21)	1.897(3)	Si(2)-C(25)	1.895(3)
C(21)-C(23)	1.525(5)	C(21)-C(22)	1.528(5)
C(25)-C(26)	1.524(5)	C(21)-C(24)	1.539(5)
C(25)-C(28)	1.529(5)	C(25)-C(27)	1.533(4)
N-Si(1)-C(11)	109.6(1)	N-Si(1)-C(12)	111.4(2)
C(11) - Si(1) - C(12)	108.1(2)	N-Si(1)-O'	107.6(1)
C(11)-Si(1)-O'	110.5(1)	C(12)-Si(1)-O'	109.6(1)
N-Si(2)-O	109.0(1)	N-Si(2)-C(21)	107.4(1)
O-Si(2)-C(21)	107.9(1)	N-Si(2)-C(25)	107.8(1)
O-Si(2)-C(25)	107.4(1)	C(21)-Si(2)-C(25)	117.1(1)
Si(1)-N-Si(2)	145.2(2)	Si(2)-O-Si(1')	178.0(1)
Si(2)-C(21)-C(22)	112.6(2)	Si(2)-C(21)-C(23)	112.0(2)
C(22)-C(21)-C(23)	109.2(3)	Si(2)-C(21)-C(24)	107.7(2)
C(22)-C(21)-C(24)	107.3(3)	C(23)-C(21)-C(24)	107.8(3)
Si(2)-C(25)-C(26)	112.8(2)	Si(2)-C(25)-C(27)	107.3(2)
C(26)-C(25)-C(27)	107.9(3)	Si(2)-C(25)-C(28)	112.1(2)
C(26)-C(25)-C(28)	109.2(3)	C(27)-C(25)-C(28)	107.3(3)

BOND LENGTHS (A) AND ANGLES (*) FOR III				
Si–N	1.720(3)	Si-C(1)	1.874(5)	
Si-C(2)	1.900(4)	Si-N'	1.708(3)	
C(1)-C(12)	1.544(7)	C(1)-C(11)	1.523(7)	
C(2)-C(22)	1.530(8)	C(2)-C(21)	1.504(8)	
N-Si-C(1)	110.9(2)	N-\$i-C(2)	105.9(2)	
C(1)-Si-C(2)	110.4(2)	N-Si-N'	110.9(2)	
C(1)-Si-N'	106.6(2)	C(2)-Si-N'	112.3(2)	
Si-N-Si'	139.1(2)	Si-C(1)-C(11)	115.8(3)	
Si-C(1)-C(12)	111.6(3)	Si-C(2)-C(21)	115.1(3)	
Si-C(2)-C(22)	111.5(4)			

Fig. 1. Molecular structure of I with unique atoms labelled. Hydrogen atoms are omitted for clarity.

Final atomic coordinates are given in Tables 1-3 and bond lengths and angles in Tables 4-6. Structure factors, anisotropic thermal displacement parameters, and hydrogen coordinates may be obtained from the authors. Figures 1-3 show the molecular structures.

Results and discussion

TABLE 6

After completion of the structure determinations it was realized that I and II are effectively isostructural, despite the very different bond angles at the NH and O ring members. Both rings lie on crystallographic inversion centres and are essentially planar; the mean deviations of the eight ring atoms from their mean plane is 0.003 Å in I and 0.010 Å in II. Planar eight-membered rings are rare, but octaphenyl-

Fig. 2. Molecular structure of II with unique atoms labelled. Hydrogen atoms are omitted for clarity.

cyclotetrasiloxane is almost planar (mean deviation 0.10 Å) [8]. Particularly unusual features of II are the virtually linear Si–O–Si units in the ring (Si–O–Si 178.0(1)°); the Si–N–Si angle of 145.2(2)° and the Si–O–Si angles in I (156.0(1), 164.2(1)°) are more typical. The Si–O bonds in I and II (range 1.609–1.623 Å) and the Si–N bonds in II (1.670(3), 1.682(3) Å) are all short, consistent with some $p_{\pi}-d_{\pi}$

Fig. 3. Molecular structure of III with unique atoms labelled. Hydrogen atoms are omitted for clarity.

delocalisation in the planar rings. III adopts a tub conformation with $S_4(\bar{4})$ crystallographic symmetry; the Si atoms lie at ± 0.51 and the N atoms at ± 0.45 Å from the mean ring plane. The Si–N bonds are significantly longer (1.720(3), 1.708(3) Å), and the bond angle at nitrogen (139.1(2)°) is smaller. Still longer Si–N bonds and smaller ring nitrogen angles are observed in $[Me_2SiNH]_4$ (chair and cradle conformations; mean Si–N 1.728 Å, mean Si–N–Si 132.0° [9]) and $[Me_2SiNMe]_4$ (tub conformation; mean Si–N 1.735 Å, mean Si–N–Si 122.8° [10]).

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References

- 1 O. Graalmann, M. Meyer and U. Klingebiel, Z. Anorg. Allg. Chem., 534 (1986) 109.
- 2 O. Graalmann, U. Klingebiel and M. Meyer, Chem. Ber., 119 (1986) 872.
- 3 U. Kliebisch, U. Klingebiel and N. Vater, Chem. Ber., 118 (1985) 4561.
- 4 W. Clegg, Acta Cryst. A, 37 (1981) 22.
- 5 International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham, U.K., p. 99, 149.
- 6 D. Rogers, Acta Cryst. A, 37 (1981) 734.
- 7 S.C. Abrahams and E.T. Keeve, Acta Cryst. A, 27 (1971) 157.
- 8 D. Braga and G. Zanotti, Acta Cryst. B, 36 (1980) 950.
- 9 G.S. Smith and L.E. Alexander, Acta Cryst., 16 (1963) 1015.
- 10 B.P.E. Edwards, W. Harrison, I.W. Nowell, M.L. Post, H.M.M. Shearer and J. Trotter, Acta Cryst. B, 32 (1976) 648.